Heteropolysaccharides from Lactic Acid Bacteria

Exopolysaccharides produced by lactic acid bacteria have tremendous value in the development of new functional foods. Different types of exopolysaccharides produced vary in monomer composition, molecular weight and structure. This review focuses on the heteropolysaccharides produced by lactic acid bacteria. The huge diversity of heteropolysaccharides presents several applications in food industry. Here we report heteropolysaccharides produced by lactic acid bacteria along with their characteristics and applications.
Lactic acid bacteria (LAB) produce a wide variety of exopolysaccharides (EPS) and oligosaccharides that have immense food applications. EPS can be used as prebiotics. Prebiotics are food ingredients that cannot be digested other than by some specific bacteria and are involved in selectively stimulating the growth of probiotics to benefit the health of the host. Oligosaccharides are carbohydrate polymers of monomeric residues with degrees of polymerization (DP) between 2 and 10 linked by O-glycosidic bonds they can also be the degradation product of their related EPS.
There has been a marked increase in the use of HePS produced by LAB in the last decade. The enormous variation in the composition and structure of HePS allows it to be a versatile microbial product for diverse applications. The only drawback of HePS as compared with the more studied HoPS, is that the ability of HePS production in some strains is variable at the genetic level. Nonetheless HePS helps in survival of probiotic LAB in harsh environment such as of the human GI tract. The application of HePS as a viscosifier and texture enhancer is widely known.
The HePS also confers the immunomodulating effects, cholesterol lowering effect and inhibits α-amylase, which are some of its health beneficial functions. However the majority of LAB produce a very low level of HePS as compared to HoPS therefore optimized methodologies are required for enhanced HePS production and for their recovery from fermentation broth.
Joise Angelina
Journal of Probiotics and Health
Whasapp no. +3228082557
probiotics@emedicalscience.com