Immunostaining

Immunostaining
In biochemistry, immunostaining is any use of an antibody-based method to detect a specific protein in a sample. The term "immunostaining" was originally used to refer to the immunohistochemically staining of tissue sections, as first described by Albert Coons in 1941. However, immunostaining now encompasses a broad range of techniques used in histology, cell biology, and molecular biology that use antibody-based staining methods.
Immunohistochemistry
Immunohistochemistry or IHC staining of tissue sections (or immunocytochemistry, which is the staining of cells), is perhaps the most commonly applied immunostaining technique. While the first cases of IHC staining used fluorescent dyes (see immunofluorescence), other non-fluorescent methods using enzymes such as peroxidase (see immunoperoxidase staining) and alkaline phosphatase are now used. These enzymes are capable of catalysing reactions that give a coloured product that is easily detectable by light microscopy. Alternatively, radioactive elements can be used as labels, and the immunoreaction can be visualized by autoradiography.
Tissue preparation or fixation is essential for the preservation of cell morphology and tissue architecture. Inappropriate or prolonged fixation may significantly diminish the antibody binding capability. Many antigens can be successfully demonstrated in formalin-fixed paraffin-embedded tissue sections. However, some antigens will not survive even moderate amounts of aldehyde fixation. Under these conditions, tissues should be rapidly fresh frozen in liquid nitrogen and cut with a cryostat. The disadvantages of frozen sections include poor morphology, poor resolution at higher magnifications, difficulty in cutting over paraffin sections, and the need for frozen storage. Alternatively, vibratome sections do not require the tissue to be processed through organic solvents or high heat, which can destroy the antigenicity, or disrupted by freeze thawing. The disadvantage of vibratome sections is that the sectioning process is slow and difficult with soft and poorly fixed tissues, and that chatter marks or vibratome lines are often apparent in the sections
Applied Microbiology is a peer-reviewed Open Access Journal, encourages on-going international research and articles related to but not limited to Medical microbiology, pathogenic microbes, Pharmaceutical microbiology (antibiotics, enzymes, vitamins, vaccines) Industrial microbiology, Microbial biotechnology, Plant pathology, Veterinary, Food, Agricultural, Soil, Environmental Microbiology, etc.
It’s our privilege to recite you as a foremost strategist in the realm of research and invite to endowment your research penmanship to write (volume 6 issue 4 ) Short Communication or mini review on above topic to be published in our journal.
Applied Microbiology: Open Access follows Editorial Tracking System for quality in peer review process. Editorial Tracking is an online manuscript submission, review and tracking systems used by most of the best open access journals.
Submit manuscripts at https://www.longdom.org/editorial-tracking/index.php
or send as an e-mail attachment to the Editorial Office at appliedmicrobiol@microbiologyres.com, appliedmicrobiol@oajournal.org
Manuscripts accepted for publication will be published both in English and other languages as recommended by the author.
Best Regards,
Jessica
Journal Manager
Applied Microbiology Open Access
Whatsup no: +32-28-08-6657
Email: appliedmicrobiol@oajournal.org